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a b s t r a c t

The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural
watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organo-
phosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate
and transport processes in agricultural fields and instream network. Management-oriented sensitivity
analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of
sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion,
and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport
simulation, effects of structural best management practices (BMPs) in improving surface water quality
were demonstrated by SWAT modeling. This study also recommends conservation practices designed to
reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway,
crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction reductions with management practices in agricultural watersheds.
In recent years, non-point source pollution from agriculture is
increasingly responsible for the degradation of surface water quality.
This, in turn, increases the need of integral water-quality manage-
ment with enhanced hydrologic models. Off-site movement of
agrochemicals, such as organophosphate (OP) pesticides, to streams
and aquifers, in agricultural watersheds, may potentially cause
adverse effects on human health and ecosystem. OP pesticides are
widely used in orchards and other crops. According to the pesticide
market estimates by U.S. Environmental Protection Agency (USEPA,
2004), OP use as a percent of total insecticide use has increased from
58% in 1980 to 70% in 2001. In the San Joaquin Valley of California,
one of the most productive agricultural regions in the world, about
450 tons of active ingredients of OP pesticides were used per year
from 1990 to 2007, and OP pesticide residues have been routinely
detected in surface water bodies of the San Joaquin River watershed.
According to the sampling results during 1992–1995, pesticide levels
in 37% of the streams in the San Joaquin Valley exceeded the criteria
for the protection of freshwater aquatic life (Dubrovsky et al., 1998).

GIS-based distributed or semi-distributed modeling is widely
applied to simulate chemical transport and predict pollution
þ1 5307525262.
).

All rights reserved.
The in-field and in-stream transport processes of OP pesticides are
determined to a great extent by the dominant hydrologic processes
of a river watershed. Therefore, a reliable hydrologic simulation has
to be established for the dynamic pesticide exposure assessment.
Modeling of pesticide fate and transport might be more complex
and associated with more sources of uncertainty than hydrologic
simulation (Dubus et al., 2003; Holvoet et al., 2005). Even if the
rates and timing of a particular pesticide application are fully
recorded for some agriculturally dominated areas such as the San
Joaquin Valley, there are other data inputs associated with greater
uncertainties, such as soil properties (e.g., curve number and
erosion factors) and chemical properties of pesticides (e.g., half-
lives and partition coefficient). Therefore, it is very important to
present clearly the propagation of input variances into model
outputs for environmental persistence of OP pesticides.

In most studies of water-quality modeling at watershed scale,
sensitivity analysis is usually performed for one catchment as
a whole, without the consideration for spatial arrangement of
sub-catchments in the stream network. Therefore, the spatial effects
on the model performance and management implications are not
fully evaluated. As indicated by Arabi et al. (2006), for example, in-
stream transport processes and associated conservation practices
must be discussed at watershed scale because their effects cannot be
detected at fields. In order to provide useful information for agri-
cultural management strategies, simulation of pesticide transport
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should consider hydrometeorology and water-quality processes at
various spatial scales. The spatial dependence of environmental fate
of pesticide species were traditionally evaluated based on
measurement data. For example, Capel et al. (2001) examined
monitoring data of 39 pesticides as a function of scale across 14
orders of magnitude. There are a few but increasing number of
studies modeling fate and transport of pesticides at area-varying
watersheds (Brown et al., 2002; USEPA, 2006; Luo et al., 2008).

The Soil and Water Assessment Tool (SWAT) was chosen in this
study to predict pesticide loads of OP species in surface water. In
addition to hydrologic simulation, SWAT also allows dynamic
predictions of pesticide outputs at various spatial scale (Gassman
et al., 2007). In our previous study, SWAT had been calibrated for
the hydrologic conditions in the San Joaquin River basin
(14 983 km2), and applied to evaluate residue distribution of two
OP pesticide diazinon and chlorpyrifos (Luo et al., 2008). Based on
the calibrated model, effects of pesticide management practices on
water quality were evaluated (Zhang et al., 2008). The modeling
efforts were extended in this study by predicting pesticide trans-
port and potential efficiency of structural best management prac-
tices (BMPs) at spatial scales of [1] small watershed (the Orestimba
Creek watershed, a tributary watershed of the San Joaquin River,
563 km2), and [2] agricultural fields (agricultural drainage area in
the Orestimba Creek watershed, 146 km2 in total). The objectives of
this study were threefold: (1) to evaluate the modeling capability of
SWAT in predicting the fate and transport of pesticides in agricul-
tural watersheds with different spatial extents, by comparing with
measured pesticide loads in surface water; (2) to identify the most
influential model parameters for simulating pesticide distribution
based on a management-oriented sensitivity analysis; and (3) to
represent the functionality of selected management practices in
SWAT, and to assess the water-quality impacts at both field and
watershed scales. Results in this study were anticipated to provide
useful information for agricultural BMP planning in reducing
pesticide residues, and for future model development and evalua-
tion in agrochemical transport and mitigation.

2. Methods and materials

2.1. Site description

The Orestimba Creek watershed was selected as a representative sub-region in
the San Joaquin River basin for further investigation (Fig. 1). Large amounts of
organophosphate insecticides are sprayed to almonds and other stone-fruit orchards
in the watershed (Cryer et al., 2001). Compared to other regions in the San Joaquin
Valley, a greater variety of pesticides were detected in this watershed (Dubrovsky
et al., 1998). Chlorpyrifos and diazinon loadings per unit area from the Orestimba
Creek watershed were significantly higher than those from other tributary water-
sheds of the San Joaquin River (Domagalski and Munday, 2003). In addition, the
study area in the valley floor consists of confluent alluvial fans characterized by
heavier textured soils and greater slopes compared to the eastern side (Cryer et al.,
2001; Chu and Marino, 2004; Luo et al., 2008). Therefore, the Orestimba Creek
watershed might be more vulnerable to runoff, and represents a worse-than-
average condition for pesticide contamination and associated ecosystem risks.

As a western tributary of the San Joaquin River, the Orestimba Creek is originated
in the Coast Range mountainous area and flows through agricultural lands in the San
Joaquin Valley. The boundary of the watershed was defined by the California Envi-
ronment Protection Agency (CEPA), with total area of 563 km2 (CEPA, 2007). The main
soil taxonomies of the watershed are Argixerolls in the mountainous area and
Xerorthents in the valley floor, with saturated hydraulic conductivities ranging from
2.7 to 28.2 mm s�1 for agricultural land. Annual average precipitation in this area is
290 mm, 71% of which is observed during rainfall season of December through March.
During summer months, stream flow in the lower reaches of Orestimba Creek is
dominated by agricultural drainages. Irrigation sources included San Joaquin River
diversion, Central Valley Project diversion, and pumped groundwater. During summer
months, irrigation tailwater are the main source of stream flow. The watershed was
further delineated into 4 subbasins following the CalWater (California watershed
delineation) version 2.2.1 (CDWR, 2004), as shown in Fig. 1. For the subbasins of north
fork, south fork and middle Orestimba Creek, majority of the land was covered by
forest and rangeland, with slopes of 20–40%. Croplands are mainly located in the flat
valley floor in the lower Orestimba Creek subbasin at elevations of 66–20 m.
2.2. Pesticide simulation in SWAT

SWAT is a conceptual semi-distributed model for watershed hydrology and
water-quality operating on daily time step (Neitsch et al., 2005). In the model, the
watershed of interest is divided into explicitly parameterized smaller areas of
subbasin and enclosed hydrological response units (HRUs). The HRUs are delineated
by overlaying topography, soil, and land use maps, and assumed to be homogeneous
with respect to their hydrologic properties. SWAT simulation can be separated into
two major divisions of ‘‘land phase’’ and ‘‘routing phase’’. Model outputs from the
two phases were defined as ‘‘yield’’ and ‘‘load’’ in this study, respectively. Yields were
the amounts of water, sediment, nutrient and pesticide loadings delivered to the
main channels, while loads were model outputs predicted at the output of
a subbasin or watershed. Water and sediment yields were available in the SWAT
HRU output file (output.hru) and pesticide yields could be obtained from the
pesticide output file (output.pst). In-stream loads of all model outputs were stored
in the SWAT reach output file (output.rch).

SWAT has the capability to predict pesticide yields from agricultural land to
streams and in-stream transport processes for both dissolved and particulate forms.
Simulated fate processes in agricultural lands include volatilization, wash-off,
degradation, leaching and horizontal movement with surface runoff and lateral flow.
SWAT simulates volatilization, photolysis, hydrolysis, biological degradation and
chemical reactions in the soil based on a lumped parameter of pesticide half-life in
soil. Similarly, half-life in foliage is used to estimate pesticide degradation and
volatilization on the canopy. The governing factors of pesticide yield are surface and
subsurface runoffs induced by rainfall and irrigation, especially the runoff events
occurring soon after pesticide application (Luo and Zhang, 2009). Pesticide yield is
also influenced by the terrestrial factors and chemical properties of pesticides. Phase
distribution of pesticide in solution or attached to sediment is determined by
organic carbon content of soil layer and organic carbon normalized partition coef-
ficient (KOC) of the pesticide. For in-stream pesticide processes, SWAT assumes
a well-mixed layer of water and suspended sediment overlying a bed sediment layer.
The main in-stream loss processes simulated for the water column include degra-
dation, volatilization, and sedimentation. Pesticide degradation is estimated based
on pseudo first-order kinetics with a rate constant reflecting the overall trans-
formation effects. Volatilization of pesticide in the dissolved phase is formulated
based on a user-defined volatilization mass-transfer coefficient. As suggested by the
SWAT manual, the volatilization coefficient was estimated following Whitman’s
two-film theory by assuming an instantaneous equilibrium in the air–water inter-
face (Chapral, 1997; Neitsch et al., 2005). Pesticide sedimentation is simulated as
two-step process of sorption and settling/resuspension in SWAT. The fraction of
pesticide in the dissolved phase (fd) is calculated by solid–liquid partitioning,

fd ¼
1

1þ CHPSPT KOC$SEDCONC
(1)

where CHPST_KOC (m3 g�1) is the pesticide partition coefficient, calculated as the
product of KOC and organic carbon content of suspended sediment, and SEDCONC
(g m�3) is concentration of suspended solids in the water. Pesticide sorbed to sus-
pended particle can be removed from the water column by sedimentation, char-
acterized by a sedimentation velocity. Detailed information for the equations of
hydrologic cycle and pollutant transport were documented in the SWAT manual
(Neitsch et al., 2005).

SWAT provides options to simulate two types of edge-of-field BMPs, i.e., filter
strips and tailwater ponds. The model assumes that a filter strip removes sediment,
nutrients, and pesticides from surface runoff with the same trapping efficiency
(trapef), calculated as a function of the width of the filter strip (FILTERW, m),

trapef ¼ 0:367$FILTERW0:2967 (2)

In-pond transport processes are simulated by SWAT for water, sediment, and
nutrients, but not for pesticides. However, SWAT includes a simulation module for
pesticide losses in lakes and reservoirs, based on similar equations of in-stream
pesticide transport and fate. In this study, SWAT was improved by incorporating the
transformation and transport of pesticides in tailwater ponds, based on the equa-
tions used for the pesticide processes instreams and lakes. The modified SWAT
model, therefore, had the capability to evaluate the removal of pesticides by tail-
water ponds before entering the main channel. Representations of other BMPs, e.g.,
crop residue management, grassed waterway, are conducted in SWAT through
alteration of its input parameters. Arabi et al. (2007) reviewed modeling studies in
evaluating BMPs around the globe and developed a method for the representation of
several agricultural BMPs with SWAT.
2.3. Data collection and simulation design

Daily data of precipitation, temperatures, wind speed, solar radiation, and
relative humidity was taken from weather stations at Newman (37.28N, 121.02W)
and Gilroy (37.00N, 121.57W), California, operated by the National Climate Data
Center. The channel system was generated from the National Hydrography Dataset
developed by U.S. Geological Survey (USGS). Contemporary land use was obtained
from land surveys by California Department of Water Resources (CDWR, 2008), for



Fig. 1. Location of the Orestimba Creek watershed with subbasins of [1] lower Creek, [2] middle Creek, [3] north fork, and [4] south fork.

Table 1
Physicochemical properties and mass-transfer coefficients for chlorpyrifos and
diazinon.

Parameter Description Values

Chlorpyrifos Diazinon

CHPST_REAb Hydrolysis coefficient (d�1) 0.012 0.005
HENRYb Henry’s law constant (–) 3.0 � 10�4 3.0 � 10�5

HIFE_Fa Half-life on foliage (d) 3.3 4.0
HIFE_Sa Half-life in the soil (d) 30.0 40.0
MWb Molecular weight (g mol�1) 350.6 304.4
SEDPST_REAb Degradation coefficient

in sediment (d�1)
0.005 0.043

KOC
a Organic carbon normalized

partition coefficient (L kg�1)
6070 1000

WOFa Wash-off fraction (–) 0.65 0.9
WSOLa Solubility (mg L�1) 0.4 60.0

a SWAT built-in pesticide property database.
b Agricultural Research Service (ARS) pesticide property database (USDA, 2001),

data for 20 or 25 �C.
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Stanislaus (in 2004) and Merced (in 2002) counties. Land use information from the
surveys was considered to be representative of the study area during the entire
simulation period. Total cropping area was 146 km2 and mainly located in the lower
Orestimba Creek subbasin. Planted crops were grouped as five major crop types of
orchard (30.4%), beans (24.3%), irrigated pasture (22.0%), tomato (8.8%), and corn
(7.7%). Other minor crops were aggregated and simulated as general crop. For each
crop type, parameters for plant growth were taken from SWAT built-in crop data-
base. Soil properties were extracted from the Soil Survey Geographic (SSURGO)
database (USDA, 2008). ArcSWAT (Winchell et al., 2007), a graphic user interface of
SWAT model, was used in this study for spatial analysis and data formatting for
model inputs.

Daily data for pesticide use amounts of chlorpyrifos and diazinon in the study
area during 1990–2007, the most recent year available at the time of study, was
retrieved from the California Pesticide Use Reporting (PUR) database (CEPA, 2008a).
The PUR data is organized for the Meridian-Township-Range-Section (MTRS) in the
United States Land Survey System, and was summarized for each simulated crop
type in this study. There were general decreasing trends for the uses of both
pesticides in the Orestimba Creek watershed. An annual reduction rate averaged 5%
was observed for application amounts of both chemicals during 1990–2007. In the
investigated watershed, majority of chlorpyrifos (76%) and diazinon (53%) are
applied during irrigation months of April to November. Chlorpyrifos and diazinon
were sprayed to all major crops in the watershed, and their application efficiency
was set as 0.75 for all crops as suggested by SWAT built-in pesticide property
database. Chemical properties of chlorpyrifos and diazinon were based on the SWAT
built-in data and USDA pesticide property database (Table 1).

The middle Orestimba Creek is gauged by USGS site #11274500 (‘‘Orestimba
Creek near Newman, California’’), monitoring the water flows originating in non-
agricultural areas of the Coastal Range during rainfall season (Fig. 1). Another USGS
gauge, ‘‘#11274538, Orestimba Creek at River Road, Cross Landing, California’’, is
located at the watershed outlet. Measurements at this location reflect inputs of non-
point source pollution from agricultural fields in the lower Orestimba Creek
subbasin. Daily stream flow rate is available at both sites for the simulation years
(USGS, 2008), with annual average stream flow rates of 0.58 and 1.26 cm at gauges
#11274500 and #11274538, respectively. Concentrations of suspended sediment and
dissolved pesticides are sampled by the USGS and CEPA at the watershed outlet of
Orestimba Creek (#11274538) (CEPA, 2008b; USGS, 2008). No measurements were
taken for chlorpyrifos and diazinon concentrations in particle-bound form. In-
stream loads of dissolved pesticides were calculated from the concentration and
stream flow at the same day, and organized as monthly averages for evaluating
model performance.

The latest version of SWAT (SWAT2005) was used in this study to simulate
hydrologic and transport processes in the Orestimba Creek watershed at daily time
step for the period of 1990–2007. The first two simulation years were used for model
initialization, while model calibration and validation for stream flow and sediment
load were conducted for years 1992–1997 and 1998–2007, respectively. In this study,
SWAT was calibrated and validated for monthly stream flow and sediment load
based on measurements at the two gauging stations within the Orestimba Creek
watershed. Automatic calibration was conducted and the Nash-Sutcliffe efficiency
(NSE) was used as calibration criterion. Model performance was also evaluated by
percent bias (PBIAS). As suggested by Moriasi et al. (2007), satisfactory simulation is
indicated by NSE < 0.5 and PBIAS �25% for stream flow, �55% for sediment, and
�70% for other water-quality variables. Calibration with respect to stream flow was
first performed based on input parameters of SCS curve number (CN2) and soil
evaporation compensation factor (ESCO). Channel erosion factors (CH_COV and
CH_EROD) and the linear parameter for channel sediment routing (SPCON) were
calibrated sequentially for sediment loads. The calibrated model was assumed to
provide reliable hydrologic framework for the study area, and applied for dynamic
simulation of pesticide fate and transport.

2.4. Management-oriented sensitivity analysis

A management-oriented sensitivity analysis was performed to identify the
SWAT input parameters that significantly affect model predictions of pesticide yields
and loads. The sensitivity analysis was only conducted in the lower Orestimba Creek
subbasin, where almost all pesticide applications occur. Currently, structural BMPs
were not extensively implemented in the lower portion of the watershed. In addi-
tion, the sensitivity analysis in this study was conducted on calibrated parameters
for the area of interest since the model sensitivity may vary with the magnitude of
input values due to the nonlinearity in the model equations (Luo and Yang, 2007).
Therefore, the results of this study reflected the ‘‘actual’’ sensitivity of model
predictions in the study area, rather than the theoretical sensitivity of the model
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equations as provided in global sensitivity analysis or by aggregating contributing
catchments into a single modeling unit. The results would be appropriate in eval-
uating agricultural BMPs in improving water quality in the watershed.

Selection of parameters for the sensitivity analysis was based on literature
review and the pesticide simulation algorithm in SWAT as discussed above. A set of
24 SWAT input parameters for landscape morphology, channel characteristics, and
chemical properties were selected in this study (Table 2). For soil properties, only
parameters for the top soil layer were applied in the sensitivity analysis. For
parameters of edge-of-field BMPs, typical values from literature review were taken
as initial values, for example, the width of filter strip (FILTERW) was set as 5 m and
the drainage fraction of tailwater pond (PND_FR) was 50%. Selected parameters fell
into two categories according to their effects on the pesticide yield from agricultural
fields, or in-stream pesticide loss. Only parameters related to agricultural conser-
vation practices were considered. Therefore, some model inputs (e.g., groundwater
parameters and wash-off coefficient), which might have significant effects on
hydrology and pesticide transport, were not included here.

For each input parameter selected in the sensitivity analysis, 50 numerical
values were sampled randomly in a relative way to its calibrated value within the
corresponding range (Table 2), and then were applied in SWAT simulations. For each
sampled value, the sensitivity was calculated as sensitivity index (S, also called
condition number or relative sensitivity),

SI ¼
vP
vI

I
pðIÞ (3)

where I is the considered model parameter and P is the model prediction. Model
sensitivity to a specific parameter was reported as the average of the corresponding
sensitivity indices. Therefore, a total of 1200 (¼24 � 50) SWAT simulations was
conducted for sensitivity analysis, and for each simulation only one input parameter
was changed while keeping all others constant. Results of sensitivity analysis
identified key processes and parameters for pesticide yield and transport, and
provided guidance for selection of structural BMPs. In each BMP, multiple param-
eters are usually involved and inter-related based on the physical practices. There-
fore, sensitivity of model prediction on each individual parameter in a BMP was not
reported in this study. Instead, BMPs were evaluated by their effectiveness, defined
as the relative changes of water, sediment, and pesticide outputs before and after
BMP implementations.

3. Results and discussion

3.1. Baseline modeling

The results of statistical evaluation of the model performance for
stream flow, sediment, and pesticides predicted at the two USGS
Table 2
Parameters used in sensitivity analysis for pesticide yields at the edge of fields.

Name Initial value Range Definition

Category I: parameters for pesticide yield and edge-of-field BMPs
BIOMIX 0.2 0–1 Biological mixing efficiency
CN2 77 35–98 SCS runoff curve number for

moisture condition II
FILTERW 5 0–10 Width of filter strip (m)
HRU_SLP 0.004 0–0.6 Average slope steepness
OV_N 0.14 0.1–0.3 Manning’s ‘‘n’’ for overland flow
PND_FR 0.5 0–1 Fraction of the subbasin area

draining into the pond
SOL_AWC 0.17 0–1 Available water capacity of the soil layer
SOL_K 8.5 0–100 Soil conductivity (mm h�2)
USLE_C 0.001–0.2 0–0.2 Minimal value of USLE equation cover

and management factor
USLE_K 0.32 0–0.65 USLE equation soil erodibility factor
USLE_P 1 0.1–1 USLE equation support practice factor
Chemical properties: HLIFE_F, HLIFE_S, and KOC (Table 1)

Category II: parameters for in-stream pesticide loss
CH_COV 0.5 0–0.6 Channel cover factor
CH_EROD 1 0–1 Channel erodibility factor
CH_N1 0.014 0.008–0.065 Manning’s ‘‘n’’ value

for the tributary channels
CH_N2 0.014 0.01–0.3 Manning’s ‘‘n’’ value

for the main channels
CH_S1 0.0051 0–1 Average slope for tributary channels
CH_S2 0.001 0–1 Average slope for the main channel
SPCON 5 � 10�4 1 � 10�4 � 0.01 A linear parameter used

in channel sediment routing
Chemical properties: CHPST_REA, HENRY, and KOC (Table 1)
gauges during 1992–2007 are summarized in Table 4, reported for
rainfall season, irrigation season, and the entire simulation period.
The model efficiencies (NSE) by comparing the SWAT-predicted
monthly stream flow and USGS measurements were 0.82 and 0.78 at
gauges #11274500 and #11274538, respectively, for the entire
simulation period (Fig. 2). This indicated good simulations of
hydrology for both non-agricultural and agricultural areas in the
Orestimba Creek watershed. In our previous study an SWAT model
was calibrated for the entire San Joaquin River watershed, and
model prediction for the Orestimba Creek outlet showed NSE of 0.5
for 1992–2005 (Luo et al., 2008). Therefore, SWAT performance for
hydrologic simulation was significantly improved by introducing
multiple subbasins in the study area. Before entering agricultural
areas, the annual average stream flow predicted at gauge #11274500
was 0.59 m3 s�1, and usually dry during June through November. At
the Orestimba Creek outlet, the annual average stream flow was
predicted as 1.26 m3 s�1, with about 50% of the flow contributed by
agricultural return flows. Due to lack of data on daily actual irriga-
tion water for the study area, the SWAT built-in module of automatic
irrigation was used to estimate irrigation water application.
Simulated irrigation water use was on average 622 mm yr�1 during
1990–2007, consistent with reported annual water application of
409–762 mm in the study area (CDWR, 2007). The irrigation algo-
rithm in the SWAT model limited the irrigated water amount by the
soil field capacity, implying an assumption of high efficiency in
water use and water diversion. In addition, pesticide wash-off from
canopy by irrigation is not simulated in SWAT, resulting in under-
estimation of pesticide residues in soil and runoff.

Predicted monthly average suspended sediment concentration
and dissolved pesticides loads at the Orestimba Creek outlet were
compared to monitoring data (Fig. 3). The NSE values of the model
performance during the entire study period were 0.70, 0.55, and
0.58 for the predictions of suspended sediment concentration,
dissolved chlorpyrifos load, and dissolved diazinon load, respec-
tively. SWAT simulation presented satisfactory agreements with
measured data for sediment and pesticides predictions at the
Orestimba Creek watershed. The dependence of pesticide loads on
the application timing and surface-runoff occurrence has been
documented in our previous studies (Luo et al., 2008; Luo and
Zhang, 2009). Another potential source of model uncertainty was
the change in agricultural land cover (e.g., crop types and areas) of
the studied watershed. SWAT parameterization in this study was
based on the land use survey during 2002–2004, therefore, agri-
cultural land cover changes before and after the survey years were
not included in the model simulation. In addition, measured
pesticide data, usually as instantaneous concentrations, are highly
variable both spatially and temporally, and associated with field
sampling uncertainty.

The average loads as percent use (LAPUs) and their annual
variability were evaluated for total pesticide predictions (in both
dissolved and particulate forms) at field and watershed scales
(Table 3). There were general decreasing trends for both LAPUs and
their coefficients of variance with the increase of simulated spatial
scales (from field scale to small watershed to large watershed). This
finding was consistent with the measured data compiled by Capel
et al. (2001) for pesticide with moderate in-stream losses. LAPU
values at field scale reflected the tendency toward runoff of the
pesticides used in the agricultural land, while those predicted at the
watershed outlets were also affected by the loss processes in
riverine systems (e.g., degradation, volatilization and settling). At
fieldscale, pesticide runoff was associated with high variability, and
greatly influenced by individual storms, irrigation, and pesticide
uses at each field. The variability would be less at larger spatial
scales over which agricultural runoffs from multiple fields were
integrated. The predicted LAPU values were in agreement with
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Fig. 2. Predicted and observed monthly stream flow (m3 s�1) at USGS sites (a) #11274500 and (b) #11274538 (Fig. 1).
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those reported in the literature. For example, Capel et al. (2001)
reported the LAPU values of 0.220 � 0.430% for diazinon, and
0.013 � 0.030% for chlorpyrifos based on nation-wide sampling in
large watersheds (>1000 km2) of the United States. Simulation
results also indicated that the LAPU values for a pesticide in wet
years were significantly higher than those predicted in dry years.
Similarly, precipitation also had effects on the monthly variations of
pesticide LAPU values. The predicted monthly LAPU values during
rainfall season (December–March) were up to 10 times of the
annual averages, which was consistent with the results from field-
scale studies in the Orestimba Creek watershed (Luo and Zhang,
2009). Similarly, rainfall-induced runoff generated higher pesticide
yield relative to runoff caused by irrigation in the San Joaquin
Valley (Luo et al., 2008). In California, many pesticides applied
during winter cause problems when rain washes residues into
rivers and stream; therefore, regulatory controls have been
imposed to restrict pesticides used as dormant sprays (CEPA, 2006).

3.2. Factors controlling pesticide yields from agricultural land

Table 5 highlights the major influential parameters based on
sensitivity analysis for pesticide yield from agricultural fields. A
negative sensitivity index indicated that the model output was
inversely correlated to the corresponding input parameter. Sensi-
tivity analysis results indicated that the governing factors for
pesticide supply to the Orestimba Creek were hydrological
parameters involving the generation of water and sediment runoff
(Table 5). The curve number for antecedent moisture condition
(CN2) was identified to be the most important parameter. As
a function of the soil permeability, land use, and hydrologic
condition, CN2 is an empirical parameter used for predicting direct
runoff from rainfall excess in SWAT. High CN2 values cause most of
the rainfall to appear as runoff, while lower values correspond to
increased water retention in the soil. As discussed before, the
Orestimba Creek area was highly vulnerable to surface runoff. The
sensitivity index of CN2 to total pesticide yield were 9.97 for
chlorpyrifos and 8.05 for diazinon. The values were higher than
those reported for various pesticides in the San Joaquin Valley (Luo
et al., 2008), 7.53 for chlorpyrifos and 5.57 for diazinon, and in the
Smith Fry watershed, Indiana (Arabi et al., 2007), 6.78 for atrazine.
With sensitivity indices of 0.44 and 0.72 for chlorpyrifos and diaz-
inon, respectively, dissolved pesticide yields were also sensitive to
available water content of soil (SOL_AWC) which affects surface
runoff and lateral flow as carrying media for pesticide transport.
The yields of pesticides in particulate form were mainly determined
by the sediment yields, sensitive to the USLE (Universal Soil Loss
Equation) parameters (Table 2), such as soil USLE_C, USLE_K,
USLE_P, and topographic factor (calculated based on slope,
HRU_SLP). In this study area, both high pesticide use and high
suspended sediment concentration were observed during irrigation
season (Fig. 3). This condition suggested a very high pesticide runoff
potential in the study area, especially for chemicals with large KOC

values. Therefore, field yield of pesticides in this area could be
efficiently reduced by BMPs designed for sediment reductions.

KOC had only a moderate impact on the total pesticide yield,
although it affected pesticide partitioning between dissolved and
particulate phases. The only chemical property that was in
competition with the hydrologic parameters was degradation half-
life in soil (HLIFE_S), which determined the amount of pesticides in
the soils available to water and sediment runoff. Further data
analysis indicated that the effects of the HLFE_S on the total
pesticide yield were determined by the soil mobility and applica-
tion timing of a pesticide. With lower mobility in the soils (higher
KOC), pesticides were more likely to remain in top soil layers and be
extracted during surface-runoff events. Similarly, during irrigation
seasons pesticides might accumulate in the soil columns due to the
lack of mobile water. Therefore, large sensitivity on HLFE_S was
associated with pesticides with higher KOC and/or large fraction of
irrigation-season use.

3.3. Factors of pesticide in-stream processes

Once released into streams, pesticides undergo physical and
chemical processes such as volatilization, sedimentation, and
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Fig. 3. Predicted and observed monthly average of (a) sediment concentration (mg L�1), and in-stream loads (kg mon�1) of (b) chlorpyrifos and (c) diazinon at Orestimba Creek
outlet (USGS #11274538).

Y. Luo, M. Zhang / Environmental Pollution 157 (2009) 3370–3378 3375
degradation. The relative importance of those processes were
indicated by the results of sensitivity analysis, as reported by the
sensitivity indices for selected SWAT input parameters for channel
transport simulation (Table 6). Almost all parameters in Table 6
affected pesticide loads in both dissolved and particulate phases,
since dynamic equilibrium was assumed to be established instan-
taneously between the two phases in the SWAT simulation. In the
Orestimba Creek watershed, pesticide transport was mainly
sensitive to the channel characteristics that influenced sediment
transport capacity of the channel system, such as the sediment
routing parameter (SPCON) and roughness coefficient (CH_N).
Channel erosion, which was simulated based on the channel cover
factor (CH_COV) and erodibility factor (CH_EROD), had negligible
effects on the predictions of total pesticide loads. These results
suggested that adsorption and consequent sedimentation were the
Table 3
Predicted LAPU (load as percent use) for pesticide at various spatial scales during 1992–

Predictions

Pesticide yield from agricultural lands in the Orestimba Creek watershed
Pesticide in-stream load at the outlet of Orestimba Creek
Pesticide in-stream load at the outlet of San Joaquin River

Note: the results for pesticide in-stream load at the outlet of San Joaquin River were bas
governing processes in determining in-stream fate and transport of
pesticides in the study areas. With increased sediment concentra-
tion in the stream, two competitive processes could occur simul-
taneously: [1] more pesticide partitioning to particulate phase as
shown in Eq. (1), and [2] more pesticide being deposited into bed
sediment due to elevated pesticide concentration in suspended
sediment. The results of the sensitivity analysis indicated that the
dominant process of a pesticide transport was mainly determined
by its KOC value. Predictions of total in-stream loads of chlorpyrifos
were more sensitive to the sediment concentration, while elevated
sediment concentration only had moderate influences on the total
diazinon load. These results indicated that sedimentation was the
primary in-stream process for the pesticides with high KOC values.

Key processes for pesticide in-stream loss were also identified
by comparing the sensitivities of chemical properties. Generally,
2006 (coefficients of variance in parentheses).

Drainage area (km2) LAPU

Chlorpyrifos Diazinon

146 0.047 (0.839) 0.199 (1.151)
563 0.034 (0.734) 0.185 (1.121)

14 983 0.033 (0.649) 0.137 (0.578)

ed on the modeling results from our previous study (Luo et al., 2008).



Table 4
Results of statistical evaluation comparing observations and model predictions of stream flow, sediment, and pesticides in the Orestimba Creek watershed during 1992–2007.

USGS gauge ID and variables 11274500 11274538

Stream flow Stream flow Sediment Chlorpyrifos Diazinon

Rainfall season (December–March)
NSE 0.79 0.77 0.63 0.64 0.52
PBIAS 0.02 �0.16 �0.22 0.20 0.50

Irrigation season (April–October)
NSE – 0.59 0.62 0.50 0.70
PBIAS – 0.02 �0.01 0.28 0.14

Overall
NSE 0.82 0.78 0.70 0.55 0.58
PBIAS �0.04 �0.09 �0.04 0.25 0.35

Notes: Measurements are not available at gauge #11274500 during summer months when the Orestimba creek is usually dry out at this site. NSE ¼ Nash-Sutcliff efficiency;
PBIAS ¼ Percent bias.
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KOC had negative effects on the total in-stream load predicted for
both pesticides, although the loads in particulate phase were
significantly increased with high KOC values. It was in consistence
with the results of pesticide in-stream losses by Capel et al. (2001),
in which pesticides with higher partition coefficient need shorter
travel times to have a given in-stream losses. By comparing the
corresponding sensitivity results of chlorpyrifos and diazinon,
volatilization was shown to be an important process for pesticides
with higher Henry’s law constant (HENRY of 3.0 � 10�4 for chlor-
pyrifos and 3.0 � 10�5 for diazinon, Table 1). Model results also
revealed that the model predictions were not sensitive to the
transformation half-lives of both chemicals instreams. Therefore,
degradation was not a governing process for in-stream transport of
chlorpyrifos and diazinon in the study area.

3.4. Demonstration of BMPs in the Orestimba Creek watershed

Based on the results of sensitivity analysis, conservation prac-
tices were evaluated for their water-quality impacts at field and
watershed scales in the Orestimba Creek watershed. Four types of
BMPs were evaluated in this study: [1] crop residue management,
[2] filter strip, [3] tailwater pond, and [4] grassed waterway. Crop
residue management is implemented within agricultural fields.
This practice decreases pesticide yields by increasing land cover
and surface roughness and hence reducing surface runoff and soil
erosion. Field strips and tailwater ponds are installed at the edge of
agricultural fields to reduce sediment and pesticide in surface
runoff. Grassed waterways are implemented within the channel
network in order to trap sediment by reducing flow velocity and
Table 5
Sensitivities (reported as sensitivity indices) of water, sediment, and pesticide yields fro

Parameters Surface runoff Sediment yield Chlorpyrifos

Dissolved

BIOMIX �0.01 0.03 �0.01
CN2 9.90 8.93 4.72
FILTERW 0.00 �0.41 �0.27
HLIFE_F – – 0.01
HLIFE_S – – 0.96
HRU_SLP �0.01 1.27 0.17
KOC – – �0.94
OV_N 0.00 �0.08 0.00
PND_FR �0.01 �0.61 �0.10
SOL_AWC 0.16 �0.04 0.44
SOL_K �0.06 0.00 0.19
USLE_C 0.00 0.74 �0.01
USLE_K 0.00 0.58 0.00
USLE_P 0.00 0.79 �0.01

Notes: 1. Condition numbers with abstract values less than 0.005 were reported as 0.00
decreasing channel erosion. SWAT parameter adjustment for BMP
representation was taken from literature review and USDA
technical guidance (Table 7). All conservation practices were
applied in agricultural lands in the lower portion of Orestimba
Creek watershed. Effectiveness was defined as the relative reduc-
tion of monthly average predictions of sediment and pesticides
before and after BMP implementation, and reported at both field
and watershed scales.

The in-field practice of crop residue management is designed to
decrease both soil erosion and water runoff. Under this practice,
similar reduction effectivenesses were predicted for the yields of
both pesticides. This was also in agreement with the sensitivity
analysis results in Table 5, where similar sensitivity indices for CN2,
USLE_P, and OV_N were reported for total pesticide yields of
chlorpyrifos and diazinon. For filter strips, SWAT incorporates its
effect through a single value of trapping efficiency used for sedi-
ment, nutrients and pesticides in surface runoff. As shown in Eq.
(2), the trapping efficiency was calculated as 59% with
FILTERW¼ 5 m. Lateral flows also contribute to pesticide yields, but
are not treated in filter strips. Therefore, the reduction effectiveness
of pesticides was lower relative to the theoretical value of 59%
(Table 7). By applying a fixed value for pesticide reduction through
filter strip, SWAT prediction might overestimate the reduction of
pesticides in dissolved phase, especially for chemicals with lower
KOC. Other BMPs of tailwater pond and grassed waterway are
mainly designed to reduce soil erosion and sediment amount.
Therefore, in general higher effectivenesses were observed for
chlorpyrifos with higher soil adsorption compared to diazinon as
shown in Table 7.
m agricultural fields of the Orestimba Creek watershed.

Diazinon

Sorbed Total Dissolved Sorbed Total

0.00 �0.01 �0.02 �0.02 �0.02
12.21 9.97 5.70 10.73 8.05
�0.42 �0.36 �0.26 �0.42 �0.32

0.01 0.01 0.02 0.00 0.01
1.08 1.05 0.69 0.50 0.60
1.08 0.81 0.21 1.15 0.65
0.07 �0.23 �0.71 0.46 �0.16
�0.06 �0.04 0.00 �0.06 �0.03
�0.68 �0.45 0.14 �0.92 �0.16
�0.12 0.05 0.72 �0.29 0.25
�0.01 0.05 0.20 �0.01 0.10

0.65 0.45 0.00 0.69 0.32
0.49 0.35 0.00 0.53 0.25
0.69 0.48 0.00 0.74 0.34

. 2. Top three parameters in each category are italicised.



Table 6
Sensitivities (reported as sensitivity indices) of water, sediment, and pesticide loads at the outlet of Orestimba Creek.

Parameters Stream flow Sediment load Chlorpyrifos Diazinon

Dissolved Sorbed Total Dissolved Sorbed Total

CH_COV 0.00 0.07 �0.04 0.02 0.00 0.00 0.01 0.00
CH_EROD 0.00 0.07 �0.04 0.03 0.00 0.00 0.01 0.00
CH_N1 0.00 0.01 0.01 �0.01 0.00 �0.02 �0.03 �0.02
CH_N2 0.00 �0.43 0.04 �0.42 �0.24 0.00 �0.53 �0.04
CH_S1 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.01
CH_S2 0.00 0.26 �0.02 0.19 0.11 0.00 0.31 0.02
CHPST_REA – – 0.00 0.00 0.00 0.00 0.00 0.00
KOC – – �0.51 0.27 �0.04 �0.12 0.83 �0.05
HENRY – – �0.02 �0.01 �0.01 0.00 0.00 0.00
SPCON – 0.70 �0.13 0.44 0.21 �0.05 0.78 0.01

Notes: 1. Condition numbers with abstract values less than 0.005 were reported as 0.00. 2. Top three parameters in each category are italicised.

Table 7
Predicted reduction effectiveness for water, sediment and pesticide with BMPs implemented in the agricultural land of Orestimba Creek watershed.

BMPs Surface runoff Sediment Chlorpyrifos Diazinon

Yield Load Yield Load Yield Load

Crop residue management 20% 47% 8% 32% 22% 29% 27%
Filter strip – 59% 14% 56% 48% 53% 51%
Tailwater pond – 38% 4% 31% 19% 14% 11%
Grassed waterway – – 88% – 54% – 7%

Notes: Pond dimensions were calculated following the USDA NRCS Electronic Field Office Technical Guide (USDA, 2007), with PND_FR ¼ 0.5 and an operating depth of 2.44 m
(8 ft). Representations for other BMPs were taken from the SWAT modeling by Arabi et al. (2006; 2007) and Bracmort et al. (2004, 2006):
Crop residue management: reduce CN2 by 2 units; set USLE_P ¼ 0.55 (for 500 kg ha�1 residue); OV_N ¼ 0.2.
Filter strip: set FILTERW ¼ 5.0 m.
Grassed waterway: set CH_N2 ¼ 0.24, CH_COV ¼ 0, CH_EROD ¼ 0.

Y. Luo, M. Zhang / Environmental Pollution 157 (2009) 3370–3378 3377
According to local surveys, BMPs being used or proposed in the
study area include cover crops, filter strips, tailwater ponds, and
grassed waterways (CURES, 2006). In addition to landscape char-
acteristics, hydroclimatology conditions, and environmental
concerns considered in model simulations, the choice of BMPs is
also dependent on local agricultural pattern and economic
consideration. Simulations of selected BMPs in this study evaluated
influential factors and key processes in pesticide fate and transport.
The simulation results could be extended to investigate other BMPs
with similar mitigation mechanisms. For example, the sensitivity
and effectiveness of pesticide reduction to CN2 and USLE factors
demonstrated by crop residue management could also be applied
to other BMPs such as contour farming, cover crop, parallel terraces,
and strip-cropping.

4. Conclusion

In this paper, pesticide fate and transport in an agriculturally
dominated watershed were evaluated by SWAT modeling. The
model simulation was applied in the field conditions of the
Orestimba Creek watershed, California, with two widely used
organophosphate pesticides chlorpyrifos and diazinon during
1990–2007. The calibrated SWAT generated reliable simulation
results for the stream flow, sediment, and pesticides in the studied
watershed. By comparing with the results of SWAT model previously
calibrated for the San Joaquin River basin, this study demonstrated
model capability in evaluating pesticide transport and trans-
formation at spatial scales of field, small watershed, and large
watershed. Model results indicated that there were general
decreasing trends for the amounts and variations of pesticide runoff
with the increase of simulated spatial scales. This result suggested
further investigations for spatial scaling effects on the model
performance and predicted effectiveness of conservation practices.

By reviewing theoretical considerations of SWAT in simulating
pesticide processes, management-oriented sensitivity analysis was
conducted to identify governing parameters and processes to
protect water quality. Sensitivity was calculated based on the cali-
brated model parameters and the actual subbasin connectivity in
the study area. The results of sensitivity analysis in this study,
compared to a global sensitivity analysis in ‘‘single-catchment’’
scenario, therefore, provided more meaningful information for the
evaluation of local water quality and management practices. The
curve number was identified as the most important factor in the
field yield of pesticides, by affecting both runoff generation and soil
erosion. The USLE parameters had substantial effects on the
pesticide yields in particulate form, suggesting efficient removals of
pesticides with large KOC values by conservation practices designed
for sediment reductions. For in-stream processes, channel erosion
had negligible effects on the sediment and pesticide transport in
the study area. In-stream pesticide loss was mainly sensitive to the
parameters of channel roughness and sediment transport capacity.

Based on the sensitivity analysis, selected BMPs were evaluated
in the agricultural portion of the study area. With recommended
parameter settings for BMP representation, results of SWAT simu-
lation indicated potential decreases of sediment and pesticide
outputs at field and watershed scales. BMP representation by SWAT
modeling provided useful information for regulatory agencies and
local farmers in determining appropriate conservation practices.
The methods exhibited in this study can be also used to investigate
parameter sensitivity and conservation practices when applying
a complex watershed model in management decision support to
protect surface water quality.
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